skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Elawady, Amal"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. As global urbanization accelerates, the construction of tall buildings has surged, becoming a defining feature of modern cityscapes. Tall buildings, while contributing to economic growth and urban development, face substantial risks from extreme wind events, such as hurricanes and downbursts. This study provides a comprehensive evaluation of the performance of tall building facades under severe wind conditions, with a focus on recent events that impacted the Gulf Coast of the United States, specifically in Houston, during May to July 2024, including a powerful derecho and Hurricane Beryl. Through extensive damage assessments of various tall buildings, this research highlights the different damages observed from these wind events, revealing critical vulnerabilities in tall building façades, particularly in relation to wind channeling effects in densely built urban areas. The observed damage patterns, including extensive glass breakage and façade failures, underscore the need for a reassessment of wind effects on tall buildings to better reflect the complex interactions between wind forces and urban environments. Additionally, by integrating real-world damage observations with wind tunnel simulations carried out at the NSF NHERI Wall of Wind Experimental Facility, this research offers valuable insights into the factors that may have influenced the observed damage. In this wind tunnel testing campaign, a series of aerodynamic testing of a tall building model under both atmospheric boundary layer and downburst winds were conducted. Additionally, interference effects are tested for both types of events. The preliminary findings have shown that downburst winds can have higher negative pressures compared to atmospheric boundary layer (ABL) which needs to be further studied including several downburst events to characterize the difference between both types of winds. Also, the results indicated the need to conduct a detailed interference study to compare ABL and downburst to properly include these effects for dense urban areas. 
    more » « less
    Free, publicly-accessible full text available February 21, 2026
  2. Free, publicly-accessible full text available January 1, 2026
  3. Thunderstorm downburst winds are a major cause of severe damage to buildings and other infrastructure. The initiative of the NSF-NHERI Wall of Wind (WOW) Experimental Facility to design and develop a downburst simulator was established to open new horizons for multi-hazard engineering research by extending the current capabilities of the facility to enable the simulation of non-synoptic winds. Five different downburst simulator designs have been tested in the 1:15 small-scale replica of the WOW to identify the optimal design. The design concepts tested herein considered both the 2-D impinging jet and the 2-D wall jet simulation methods. The basic design methodology consists of transforming the available atmospheric boundary layer (ABL) wind simulator into downburst winds by adding an external modification device to the exit of the flow management box. A flow characterization comparison among the five contending downburst simulators, along with comparisons to real downbursts and previous literature findings, has been conducted. The study on the effect of surface roughness length on the height of the peak wind velocity showed that the implementation of a 2-D plane wall jet enables large-scale outflows (higher peak velocity height) with high Reynold numbers, which is advantageous in terms of reducing scaling effects. In general, the current research work showed that four downburst simulation methods were suitable for adoption; however, only one downburst simulator was recommended based on the feasibility of construction in the facility. The chosen downburst simulator consisted of a two louver slat system near the bottom, with a blockage at the top. This configuration enables producing a large rolling vortex passing through the testing section, which would serve adequately in the further study of turbulent flow characterization and testing of larger scale test models. 
    more » « less